{-# OPTIONS --without-K --safe #-}
open import Function.Base using (flip; _∘_)
open import Relation.Binary
import Relation.Binary.Consequences as Consequences
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
module Relation.Binary.Properties.Poset
   {p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Poset P renaming (Carrier to A)
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict
import Relation.Binary.Properties.Preorder preorder as PreorderProperties
open Eq using (_≉_)
infix 4 _≥_
_≥_ : Rel A p₃
x ≥ y = y ≤ x
open PreorderProperties public
  using () renaming
  ( converse-isPreorder to ≥-isPreorder
  ; converse-preorder   to ≥-preorder
  )
≥-isPartialOrder : IsPartialOrder _≈_ _≥_
≥-isPartialOrder = record
  { isPreorder   = ≥-isPreorder
  ; antisym      = flip antisym
  }
≥-poset : Poset p₁ p₂ p₃
≥-poset = record
  { isPartialOrder = ≥-isPartialOrder
  }
open Poset ≥-poset public
  using () renaming
  ( refl      to ≥-refl
  ; reflexive to ≥-reflexive
  ; trans     to ≥-trans
  ; antisym   to ≥-antisym
  )
infix 4 _≰_
_≰_ : Rel A p₃
x ≰ y = ¬ (x ≤ y)
≰-respˡ-≈ : _≰_ Respectsˡ _≈_
≰-respˡ-≈ x≈y = _∘ ≤-respˡ-≈ (Eq.sym x≈y)
≰-respʳ-≈ : _≰_ Respectsʳ _≈_
≰-respʳ-≈ x≈y = _∘ ≤-respʳ-≈ (Eq.sym x≈y)
infix 4 _<_
_<_ : Rel A _
_<_ = ToStrict._<_
<-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_
<-isStrictPartialOrder = ToStrict.<-isStrictPartialOrder isPartialOrder
<-strictPartialOrder : StrictPartialOrder _ _ _
<-strictPartialOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  }
open StrictPartialOrder <-strictPartialOrder public
  using ( <-resp-≈; <-respʳ-≈; <-respˡ-≈)
  renaming
  ( irrefl to <-irrefl
  ; asym   to <-asym
  ; trans  to <-trans
  )
<⇒≉ : ∀ {x y} → x < y → x ≉ y
<⇒≉ = ToStrict.<⇒≉
≤∧≉⇒< : ∀ {x y} → x ≤ y → x ≉ y → x < y
≤∧≉⇒< = ToStrict.≤∧≉⇒<
<⇒≱ : ∀ {x y} → x < y → ¬ (y ≤ x)
<⇒≱ = ToStrict.<⇒≱ antisym
≤⇒≯ : ∀ {x y} → x ≤ y → ¬ (y < x)
≤⇒≯ = ToStrict.≤⇒≯ antisym
≤-dec⇒≈-dec : Decidable _≤_ → Decidable _≈_
≤-dec⇒≈-dec _≤?_ x y with x ≤? y | y ≤? x
... | yes x≤y | yes y≤x = yes (antisym x≤y y≤x)
... | yes x≤y | no  y≰x = no λ x≈y → contradiction (reflexive (Eq.sym x≈y)) y≰x
... | no  x≰y | _       = no λ x≈y → contradiction (reflexive x≈y) x≰y
≤-dec⇒isDecPartialOrder : Decidable _≤_ → IsDecPartialOrder _≈_ _≤_
≤-dec⇒isDecPartialOrder _≤?_ = record
  { isPartialOrder = isPartialOrder
  ; _≟_            = ≤-dec⇒≈-dec _≤?_
  ; _≤?_           = _≤?_
  }
mono⇒cong : ∀ {f} → f Preserves _≤_ ⟶ _≤_ → f Preserves _≈_ ⟶ _≈_
mono⇒cong = Consequences.mono⇒cong _≈_ _≈_ Eq.sym reflexive antisym
antimono⇒cong : ∀ {f} → f Preserves _≤_ ⟶ _≥_ → f Preserves _≈_ ⟶ _≈_
antimono⇒cong = Consequences.antimono⇒cong _≈_ _≈_ Eq.sym reflexive antisym